Fetal Arrythmia
Introduction

Arrhythmias

- Can occur as soon as the heart starts to beat
- End on a final irreversible arrhythmia when we die

They are noted

- in about 2% of the pregnancies
- account for 10 to 20% of the referrals to fetal cardiology

The first heartbeat occurs by 3 weeks post-conception when the heart is only a primitive tubular structure. Major morphological remodeling occurs simultaneously with the development of the cardiac conduction system resulting by 7 weeks of gestation in a 4CH with synchronous contraction of the atrial and ventricular chambers at a rate of approximately 110 bpm.

Progressively, the SN acts as the primary pacemaker and the heart rate reaches 170 bpm by 9 to 10 weeks. At 11–14 weeks, it averages 150–170 bpm. Later on in gestation, heart rate slowly decreases. Between 20 and 40 weeks of gestation, the heart rate is regular, with a range from 110 to 180 bpm and a maximal beat-to-beat variation of 15 bpm.

Normal impulse formation and conduction

- The impulse propagates from the **sinoatrial node** along atrial muscle fibers toward the **atrioventricular junction**
 - stimulates the atrial myocardium to contract.

- **Within the AV node,**
 - The electrical impulse is **physiologically delayed**
 - Functions as a **filter** against the propagation of abnormally fast atrial rates or very premature atrial beats to the ventricles.

- **After crossing the AV node,**
 - The **bundle of His**, the **right bundle branch**, the **left bundle branch**
 - **Purkinje fibers** to the endocardial surfaces of both ventricles.

- The electrical depolarization spreads quickly from one ventricular myofiber to the next
 - so that both ventricles function as synchronous contractile units.
Abnormal impulse generation and conduction

- Cardiac cells in the specialized fibers of
 - Atria,
 - AV junction
 - His – Purkinje system

- May manifest **automaticity** outside the SA node.
 - They are called **latent pacemakers** as they are physiologically suppressed by the more rapid rate of the SA node
 - Consequently, these ectopic pacemakers **do not normally initiate the heartbeat**.
Abnormal impulse generation

There are two mechanisms of spontaneous impulse initiation that may lead to arrhythmias,

- **Automaticity** - *Automatic arrhythmias of the sinus node*
 - occur when the SA node fires at an abnormally
 - fast (sinus tachycardia),
 - slow rate (sinus bradycardia),
 - but it is still the dominant pacemaker
 - Persistent fetal sinus arrhythmia is usually associated with a precipitating factor
 - stress
 - maternal antibody mediated fetal thyroxicosis
 - hypoxia
 - acidosis
There are two mechanisms of spontaneous impulse initiation that may lead to arrhythmias,

Triggered activity - Ectopic automatic rhythms

- occur when the dominant pacemaker shifts from the sinus node to a latent pacemaker,
 - When the intrinsic rate of the SA node < ectopic pacemaker,
 - the intrinsic rate of the ectopic pacemaker increases above the normal SA rate
 - atrial ectopic tachycardia
 - junctional ectopic tachycardia
 - ventricular tachycardia
 - When the normal sinus impulse is prevented from conduction throughout the heart (AV block), leaving an ectopic pacemaker free to fire at its own, slower intrinsic rate.
Abnormal impulse conduction

- **Reentry**
 - propagation of an impulse through myocardial tissue already activated by the same impulse in a circular movement.
 - Reentry is the underlying mechanism of
 - atrial flutter
 - reentrant supraventricular tachycardia (SVT).

- **Blockage**
 - of the propagating cardiac impulse occurs when it arrives in regions of the heart that are not excitable, because
 - the tissue is still in the refractory period after a recent depolarization (e.g. 2:1 AV conduction ratio during atrial flutter)
 - the tissue is functionally abnormal (e.g. Replacement by scar tissue).
Intrauterine investigation of fetal rhythm and AV conduction

- **External fetal heart rate monitoring**
 - readily available
 - able to provide continuous monitoring over long periods of time
 - Ineffective at high rates
- **Conventional ECG**
- **Transmaternal fetal ECG**
 - a real-time fetal ECG is not obtainable due to the parasitic electrical field generated by the maternal heart and abdominal muscles.
 - May provide useful information
 - cardiac time intervals such as PR, QRS, and QT duration during a stable cardiac rhythm
 - it does not allow the analysis of individual cardiac cycles.
Intrauterine investigation of fetal rhythm and AV conduction

- **Fetal magnetocardiography (fMCG)**
 - allows recording of the fetal heart magnetic field instead of the traditional electric field recorded by ECG.
 - the best modality to analyze the fetal heart rhythm
 - restricted to select centers due to its high cost
Intrauterine investigation of fetal rhythm and AV conduction

- Ultrasound imaging of the fetal heart
 - 2D US
 - M-mode
 - Tissue Doppler imaging
 - can be utilized to help characterize wall motion
 - Pulsed wave Doppler
 - SVC/ Asc. aorta Doppler
 - Left ventricular outflow tract
Echocardiographic assessment of the fetal atrioventricular conduction system

- Stepwise interpretation of the fetal heart rhythm is based on the
 - determination of rhythm origin
 - determination of regularity
 - relationship between atrial and ventricular events
 - Rate

- Electrophysiological ‘normality ’
 - regular and normocardic fetal heart rate
 - with a normal 1:1 AV relationship
Echocardiographic assessment of fetal arrhythmias

- Irregular rhythm
 - In at least 90% of an unselected pregnancy population
 - can originate from atria/AV junction/ventricle
 - brief, isolated, and clinically benign events,
 - typically presenting as occasional ‘skipped beats’ due to isolated PACs

- Abnormal rates
 - prolonged or persistent
 - Bradycardia (heart rate < 100 beats per minute)
 - Tachycardia (heart rate > 180 beats per minute)
Irregular rhythm

- **Premature atrial contractions**
 - 90% of irregular rhythm in fetuses
 - The ventricular contraction occurs
 - prematurely if the PAC is conducted,
 - missing if the PAC is non-conducted to the ventricles.
 - In both situations, the ventricular rate is irregular
 - unless non-conducted PACs occur in a bigeminal pattern
 - Etiology
 - thyroid disease consumption of stimulants ??
 - 1-3% will develop a tachyarrhythmia
 - mostly benign and remain self-limited with a spontaneous resolution
 - after the diagnosis of the arrhythmia before birth in 95% of fetuses
 - by 1 year of age in 95% of children
 - perform a detailed fetal cardiac ultrasound
 - If the PACs are very frequent (>5 per minute, bigeminy, trigeminy),
 - Persisting for more than 3 weeks
 - associated with signs of cardiac failure or extracardiac anomalies, it is recommended
 - CHD is identified in only 0.3–2%

Irregular rhythm

- Premature junctional and ventricular contractions
 - Very rare
 - difficult to diagnose
 - PJC
 - simultaneous premature atrial and ventricular wall motion.
 - PVC
 - ventricular wall motion, which is not preceded by atrial contraction.

- Isolated PJC, PVC
 - benign prognosis
 - cardiovascular compromise can occur if sustained junctional or ventricular tachycardia develops

- M-mode recording PVC
 - the atrial rhythm (A–A) is regular,
 - the ventricular rhythm (V–V) is regularly irregular
 - due to prematurity of every alternating ventricular beat (ventricular bigeminy).
 - The average ventricular rate remains normal, despite the fact that only every second atrial beat is conducted (indicated with arrows).
Fetal bradydysrhythmia

Bradycardia

- Defined as
 - an area of the heart that depolarizes slower than the normal range for age for at least three successive beats.
 - A ventricular rate in fetuses <110 bpm
- <5% of arrhythmia referral in fetuses
- Results from
 - An abnormally slow atrial pacemaker activity with a normal 1:1 AV conduction,
 - results from different forms of conduction block at the AV junction
- Bradydysrhythmia may be
 - an isolated rhythm disorder,
 - associated with structural fetal heart disease.
- Most common causes of a sustained slow heart rate are
 - complete heart block, persistent ventricular rate <60 bpm
 - sinus bradycardia, rates between 60 and 80 bpm
 - blocked atrial bigeminy.

Fetal bradydysrhythmia

- Bradycardia
 - fall in fetal heart rate
 - reduction in fetal cardiac output
 - sustained fetal bradydysrhythmia may compromise the fetal circulation
 - important in fetuses affected by associated structural cardiac defects,
 - may limit their cardiac performance further.
 - Due to the reduced compliance of fetal ventricles, diastolic ventricular filling in the fetal heart depends to a larger degree on the atrial contraction than postnatally.
 - Worst Scenario
 - sustained fetal bradydysrhythmia
 - with a very slow ventricular rate of less than 50 bpm
 - Concomitant complete atrioventricular block

Fetal bradydysrhythmia
Clinical presentation

- **Sinus bradycardia**
 - The most common cause of bradycardia.
 - Fetal heart rate is regular and slow
 - < 100 beats per minute
 - Atrial and ventricular activities are associated in a 1:1 fashion.
- **Transient**
 - Increased vagal discharge in the fetus, possibly resulting from the pressure applied to the maternal abdomen by the transducer.

SVC/aorta Doppler recording of sinoatrial bradycardia.
- Abnormally slow, but regular atrial (A) and ventricular (V) rates that occur in a normal 1:1 AV relationship.
Sustained sinus bradycardia,
 - needs to be evaluated
 - may be found in the seriously sick fetus and will commonly be associated with other signs of impending fetal demise such as loss of fetal movements or fetal hydrops

- Maternal hypothermia
- Sick sinus
- Long QT syndrome
 - Long-QT syndrome is a heterogeneous genetic disorder caused by mutations in several genes that encode different ion channel proteins, most of them potassium channel proteins.

- Moderate bradycardia is also found in the fetus with frequent premature atrial contraction which are blocked at the level of the atrioventricular node.
- AV block – 2nd, 3rd degree
- familial idiopathic atrial fibrillation with slow ventricular response.
Fetal bradydysrhythmia
Clinical presentation

- **Sustained Bigeminy PAC’s with blocked premature**
 - 60-100 beats per minute.

- **SVC/aorta Doppler recording of atrial bigeminy.**
 - Normal SA node impulse (A) and premature atrial contraction (A2= PAC) alternate.
 - PAC occurs prematurely enough to regularly fail conduction to the ventricles.

- **Careful echocardiographic investigation is required to distinguish**
 - benign and transient cause of bradyarrhythmia
 - life-threatening high-degree AV block or sinus bradycardia
Fetal bradydysrhythmia
Clinical presentation

- Congenital AV Block
 - 1st degree
 - AV conduction time increased
 - Gestational age-matched reference values of AV time intervals
 - 2nd degree
 - Mobitz Type I (Wenckebach)
 - Mobitz Type II
Fetal bradydysrhythmia
Clinical presentation

- **3rd degree**
- **Complete heart block**
 - The slowest fetal heart rate will be noted if complete AV block is present.
 - complete dissociation of atrial and ventricular contractions with normal atrial, but slow ventricular rates
 - once in about 20 000 newborns.
 - The incidence may be higher in prenatal life,
 - some fetuses with complete heart block will not survive to term.
 - Complete heart block may result from
 - a lack of fusion between nodal tissue and the His bundle, which initially develop separately,
 - secondary interruption of the atrioventricular conduction axis.
Fetal bradydysrhythmia

- **Isolated complete heart block**
 - an immunological disorder
 - Mothers of affected fetuses often have connective tissue disease
 - Sjögren’s syndrome
 - Systemic lupus erythematosus
 - Almost all of them are positive for autoantibodies
 - cross the placental barrier
 - react with fetal cardiac tissue,
 - SSA/Ro or SSB/La ribonucleoproteins located on the cell surface
 - involved in the normal developmental apoptosis of cardiac cells
 - the anti-Ro antibodies, with consequent impairment of the physiological apoptosis, attraction of macrophages, and production of cytokines.
 - Inflammation, fibrosis, and calcification in the conducting system
 - heart block and/or endocardial fibroelastosis

Fetal bradydysrhythmia

- **Isolated complete heart block**
 - The risk for a woman with known anti-SSA/Ro or anti-SSB/La antibodies to have a child with complete heart block is only about
 - 2 – 5 %, and
 - After having had one child with complete heart block
 - the recurrence rate is just 15 – 20% in subsequent pregnancies.
 - Commonly, isolated complete heart block
 - develops between 18 and 24 weeks of gestation
 - progression from second-degree to complete heart block has been observed in some cases.

Fetal bradydysrhythmia

- **Complete heart block and structural heart disease**
 - Complete heart block associated with structural heart disease is mainly seen in fetuses with complex cardiac lesions.
 - Hearts with left atrial isomerism
 - bilateral left atrial morphology
 - lack a normal AV node which is a right atrial structure,
 - discordant AV connection
 - the inversion of the ventricles often leads to disruption of the AV conduction axis.
 - ventricular non-compaction
 - this form of cardiomyopathy may worsen cardiac function further, ü
 - none of the affected fetuses survived the neonatal period.
 - Associated structural heart disease is seen in
 - 30% of newborns with congenital complete heart block

Prevention and prenatal treatment of complete heart block

The effectiveness of CHB prenatal treatment is controversial.

- The rationale of such treatment is
 - To reduce damage to the conduction system and the myocardium through anti-inflammatory agents
 - Both dexamethasone and betamethasone have been used;
 - in favor of long-term treatment are not available,
 - concerns about fetal and maternal side effects of steroid therapy have been raised.

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Number of Participants</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izmirly et al</td>
<td>FS use in cases with second-degree AV Block (R)</td>
<td>20 treated, 16 untreated</td>
<td>Higher percentage reverting to first-degree AV block or normal sinus rhythm in treated group (P = 0.053)</td>
</tr>
<tr>
<td>Eliasson et al</td>
<td>FS use in cases with hydrops fetalis (R)</td>
<td>27 treated, 10 untreated</td>
<td>Lower 6-month mortality in treated group (P = 0.059)</td>
</tr>
<tr>
<td>Jaeggi et al</td>
<td>FS use in cases at diagnosis of heart block (R)</td>
<td>21 treated, 16 untreated</td>
<td>Lower 1 year mortality in treated group (P < 0.02)</td>
</tr>
<tr>
<td>Eliasson</td>
<td>FS use in cases with second- and third-degree AV block (R)</td>
<td>67 treated, 108 untreated</td>
<td>No significant difference in mortality between groups</td>
</tr>
<tr>
<td>Buyon et al</td>
<td>IVIG 400 mg/kg q3weeks from GW 12–24 in mothers with previous cardiac NL child (P)</td>
<td>33 treated</td>
<td>6 cases of cardiac NL (18% recurrence rate)</td>
</tr>
<tr>
<td>Pisoni et al</td>
<td>HCG exposure throughout pregnancy in mothers with previous cardiac NL child (R)</td>
<td>40 treated, 217 untreated</td>
<td>Decreased recurrence rate of cardiac NL in treated group (P = 0.050)</td>
</tr>
<tr>
<td>Izmirly</td>
<td>HCG exposure throughout pregnancy in mothers with previous cardiac NL child (R)</td>
<td>40 treated, 217 untreated</td>
<td>Decreased recurrence rate of cardiac NL in treated group (P = 0.050)</td>
</tr>
</tbody>
</table>

FS indicates fluorinated steroids; AV, atrioventricular; IVIG, intravenous immunoglobulin; HCG, hydroxychloroquine; R, retrospective analysis; P. prospective study; GW, weeks of gestation.

Fetal bradydysrhythmia

Prevention and prenatal treatment of complete heart block

- increase the ventricular heart rate to above 60 bpm in cases with a very low (<55 bpm) ventricular escape rate
 - administration of beta-agonists.
 - Salbutamol / terbutaline
 - to increase the fetal cardiac output through an increase in heart rate associated with a reduction in peripheral resistance.
 - if administered at high dosages
 - maximum of 40 mg/day for salbutamol
 - maximum of 30 mg/day for terbutaline
 - are effective in increasing the heart rate by 5–10 bpm.
 - Common maternal side effects
 - include tremors, tachycardia, and sweating, which usually disappear with continuation of therapy.
 - Serious effects
 - pulmonary edema, myocardial ischemia, and arrhythmias have been described.

Fetal tachyarrhythmia

- **Tachycardia is defined as**
 - an area of the heart that depolarizes faster than the normal range for age for at least three consecutive beats,
 - above 180 bpm in the fetus between 20 and 40 weeks of gestation

- **Fetal tachycardia**
 - evaluation and consultation
 - presence of sustained tachyarrhythmia or an intermittent arrhythmia that is frequent and prolonged (occurring >50 percent of the time) puts the fetus at risk for cardiovascular failure

- **Echocardiographic signs of hemodynamic compromise**
 - **Early**
 - bialtrial enlargement
 - atrioventricular valve regurgitation
 - **Late**
 - cardiomegaly
 - decreased systolic function,
 - hydrops fetalis
 - can appear within 24 hours of onset of sustained tachycardia

- **Associated maternal complications due to**
 - severe polyhydramnios,
 - Preterm contractions and labor,
 - premature rupture of the membranes

Fetal tachyarrhythmias

- Sinus tachycardia,
- Supraventricular tachycardia (SVT)
- Atrial flutter
- Ventricular tachyarrhythmia

According to electrophysiological levels

- Atrial tachycardia
 - atrial flutter,
 - atrial ectopic tachycardia
- Conduction system tachycardia
 - Atrioventricular reentry tachycardia via an apparent or ‘concealed’ accessory pathway,
- Permanent junctional reciprocant tachycardia,
- Atrioventricular nodal reentry tachycardia
- Ventricular tachycardia.

- Extrasystoles,
 - supraventricular origin is by the most frequent cause,
 - AV nodal and ventricular origins being infrequent in healthy fetuses and infants.
- In fetuses
 - 70 % are paroxysmal AV reentry tachycardia,
 - 24 % are primary atrial tachycardias (mostly atrial flutter),
 - 6 % sinus tachycardia

Fetal tachyarrhythmia

- **Sinus tachycardia**
 - usually slower than AET and PJRT
 - atrial rates of 180 – 200 bpm
 - normal 1:1 AV conduction,
 - some variability of the fetal heart rate
 - Prolonged sinus tachycardia
 - fetal distress,
 - anemia,
 - infections,
 - elevated maternal catecholamine levels due to anxiety or pain
 - Maternal β-stimulation,
 - fetal thyrotoxicosis.
 - The importance of sinus tachycardia is recognizing and treating the underlying cause.
Fetal tachyarrhythmia

- Ventricular tachycardia and junctional ectopic tachycardia are exceptional causes of fetal tachyarrhythmias.
 - VT is very rare in fetuses
 - <1% of all tachyarrhythmias
 - An underlying structural heart disease is present in approximately half of the pediatric cases
 - hypertrophic cardiomyopathy,
 - long QT syndrome,
 - right ventricular dysplasia,
 - left ventricle noncompaction,
 - congenital cardiac malformation
 - If there is no retrograde conduction across the AV node or an accessory pathway, the ventricular rate will exceed the atrial rate during ventricular or junctional tachycardia.
 - If there is retrograde 1:1 VA conduction, these arrhythmias become difficult to discern from SVT.
 - Treatment
 - beta-blockers, flecainide, sotalol, lidocaine, and amiodarone,
 - but due to the very limited number of cases, success rate of treatment is not clearly established
 - and a first-line agent remains to be established.

Atrial flutter

- atrial rate > 300 bpm
- every second or third atrial beat is conducted to the ventricles
- ventricular response rates between 150-250 bpm
Fetal tachyarrhythmia

Supraventricular Tachycardia (SVT)

1:3,700 pregnancies

It accounts
- 5 to 10% of all fetal arrhythmias,
- up to 90% of all tachycardias
- >50% of the clinically significant

Characterized by
- Regular heart rate between 220–260 bpm
- Can be sustained for hours or days, but more commonly intermittent.

Fetal tachyarrhythmia

- SVT encompasses three different arrhythmia mechanisms:
 - AV re-entrant tachycardia
 - related to fast retrograde accessory pathway conduction
 - Most commonly
 - Permanent junctional reciprocating tachycardia (PJRT)
 - related to slow retrograde pathway conduction
 - atrial ectopic tachycardia (AET)
 - due to enhanced atrial focal automaticity.

Fetal tachyarrhythmia

- Determination of the type of SVT is based on the assessment of the AV relationship and other specific characteristics
 - Sinus tachycardia and ventricular tachycardia should be ruled out since management and prognosis differ from nonsinus SVT.
 - Provoking factors for nonsinus SVT in the fetus have to be looked for
 - Co-existing CHD,
 - Hyperthyroidism,
 - Maternal caffeine, alcohol, or nicotine consumption.
 - These last causes are among the most frequent ones [49].
Fetal tachyarrhythmia

- They are distinguished based on their arrhythmia pattern and VA time relationship.
 - AV reentry, short VA tachyarrhythmia
 - retrograde atrial activation proceeds across a fast conducting accessory pathway
 - therefore occurs shortly after the ventricular contraction.
 - In long VA SVT,
 - the atrial contraction closely precedes the ventricular contraction.
 - This activation pattern is typically seen during AET, PJRT, and sinus tachycardia.
 - Sinus tachycardia is the most common cause.
In utero diagnosis of fetal tachyarrhythmia

- The majority of fetal tachyarrhythmias detected during routine obstetric examination in the second and third trimesters of pregnancy.

- If an intensive noninvasive and invasive search for an underlying disease is unsuccessful,
 - paroxysmal supraventricular tachyarrhythmia should always be taken into consideration,
 - particularly if signs of congestive heart is present.
 - repeated sonographic heart rate monitoring
 - long-term cardiotocography carried out several times per day
Fetal tachyarrhythmia

- Treatment
 - Four options are available for fetuses diagnosed with tachycardias:
 - Delivery and plan for postnatal treatment
 - Transplasental fetal treatment through administration of antiarrhythmic drugs to the mother
 - Direct (invasive) fetal treatment, with delivery of the antiarrhythmic drug directly into the fetal circulation
 - Close monitoring with no active intervention.

- As a general rule, preterm delivery of a sick hydropic fetus should be avoided
 - most experts agree on not treating a fetus with an intermittent tachycardia and no signs of fetal heart failure.

Fetal tachyarrhythmia

Things to remember

- Maternal administration of antiarrhythmic drugs is effective in the majority of cases.

- If maternal administration of antiarrhythmic drugs fails, then direct fetal therapy or delivery should be considered.
 - Hydrops reduces the transplacental transfer of the drug.

- Hydrops represents a poor prognostic sign.
 - Associated with a decrease in survival rate (73% vs. 96% in nonhydropic fetuses), a
 - Higher incidence of preexcitation on neonatal electrocardiography (ECG) (16% vs. 4%),
 - And a higher chance of long-term postnatal antiarrhythmic therapy.

Fetal tachyarrhythmia

The optimum approach depends on the following factors

- **Tachycardia rate**
 - Rates >220 bpm are most likely to progress to hydrops,
 - rates <200 to 220 bpm are much less likely to have hemodynamic consequences.

- **Persistence of the tachycardia**
 - SVT present >50 percent of the day is likely to lead to hydrops
 - tachycardia <20 percent of the day is usually well-tolerated.
 - Intermittent short bursts of tachycardia are very well tolerated and do not mandate treatment.

- **Gestational age**
 - Delivery for postnatal treatment is preferable as gestational age increases and prematurity risks decrease.

- **Presence/absence of hydrops**
 - Prior to pulmonary maturity, sonographic evidence of developing hydrops mandates treatment to slow the FHR and improve cardiac performance.
 - Delivery followed by postnatal treatment is less desirable in this setting because the combination of hydrops and prematurity is associated with very high morbidity and mortality.
 - Nonhydropic preterm fetuses with frequent and/or long periods of SVT are often treated since successful cardioversion is less likely after hydrops has developed.

- **Congenital heart disease**
 - If structural anomalies are present, the postnatal management and prognosis of these anomalies need to be taken into account.

- **Maternal factors**
 - Preeclampsia or mirror syndrome places the mother at risk of severe sequelae, and is an indication for intervention.

Fetal tachyarrhythmia

- Initial maternal and fetal monitoring
 - maternal assessment
 - medical history (especially cardiac history),
 - medication history,
 - ECG,
 - blood pressure,
 - laboratory tests (serum electrolytes, tests of renal and hepatic function, urine protein, and platelet count).
 - fetal
 - observation to document baseline status
Transplasental Fetal Antiarrhythmic Therapy

- The choice of the drug will depend mostly on the state of the fetus (signs of heart failure, fetal hydrops) as well as on the type of SVT.
- Since no large prospective randomized controlled trial (RCT) has been undertaken, there is to date no agreement on the best antiarrhythmic.

First-line agents
- Digoxin
- Sotalol
- Flecainide

Second-line antiarrhythmics
- Propafenone
- Amiodarone
- Adenosine

In Hydropic fetuses
- The conversion rate decreases to less than 25 % with digoxin
- flecainide + digoxin
- sotalol + digoxin

Fetal tachyarrhythmia

Digoxin

- Based on its safety profile and efficacy, digoxin is the initial drug of choice
 - either administered orally or intravenously to the mother
 - Or via direct intramuscular fetal injection

- **Rapid Loading dose**
 - 1 to 2 mg
 - which can be given in three doses: 0.5 mg, 0.25 mg, and 0.25 mg
 - over 18 to 24 hours,
 - followed by a digoxin level.
 - Additional doses are given if the digoxin level is low.
 - The target level is 1 to 2 ng/mL.

- **Maintenance dose**
 - determined by titrating to the fetal response, which might take several days.
 - higher in pregnant women than nonpregnant
 - 0.5 to 0.75 mg daily given in divided doses.

- **Daily ECGs to monitor**
 - P-R prolongation
 - T wave changes

- **Direct fetal intramuscular injection of digoxin combined with transplacental therapy**
 - appears to shorten the time to initial conversion of SVT and to sustain sinus rhythm in the fetus with SVT complicated by hydrops fetalis.

Fetal tachyarrhythmia

- **Flecainide**
 - 50 mg, 100 mg, and 150 mg tablets;
 - pregnancy class C
 - Initial dose 3x100
 - Maintenance 250-300mg
 - cleared by the kidney
 - three times daily dosing during pregnancy
 - Continuous maternal cardiac monitoring for 48 hours or for the first five to six doses
 - daily ECGs

- **Sotalol**
 - 80 mg, 120 mg, and 160 mg tablets;
 - pregnancy class B
 - Initial dose 3x80
 - Maintainance 250-300mg
 - cleared by the kidney
 - three times daily dosing during pregnancy
 - Continuous maternal cardiac monitoring for 48 hours or for the first five to six doses
 - daily ECGs

Non-Hydropic fetus

Transplacental Digoxin

Hydropic fetus

Transplacental Flecainide/Sotalol

Delivery for postnatal treatment

Direct Flecainide/Sotalol/Digoxin

Delivery for postnatal treatment

2nd line

Transplacental Digoxin + Flecainide/Sotalol

1st line

3rd line
Teşekkürler
<table>
<thead>
<tr>
<th>Arrhythmia</th>
<th>A rate</th>
<th>A-A interval</th>
<th>A-V relation</th>
<th>V rate</th>
<th>V-V interval</th>
<th>V-A interval</th>
<th>Incidence</th>
<th>Relevance, outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular rhythm</td>
<td>Isolated PAC, conducted</td>
<td>Normal</td>
<td>Irregular</td>
<td>1:1</td>
<td>Normal</td>
<td>Irregular</td>
<td>Variable</td>
<td>+++</td>
</tr>
<tr>
<td>Atrial trigeminy, conducted</td>
<td>Isolated PAC, blocked</td>
<td>Normal</td>
<td>Irregular</td>
<td>>1:1</td>
<td>Normal</td>
<td>Irregular</td>
<td>+++</td>
<td>Minor, transient</td>
</tr>
<tr>
<td>Atrial trigeminy, blocked</td>
<td>Atrial bigeminy, conducted</td>
<td>Normal</td>
<td>Regularly irregular</td>
<td>1:1</td>
<td>Normal</td>
<td>Regularly irregular</td>
<td>Variable</td>
<td>Minor, transient</td>
</tr>
<tr>
<td>Atrial bigeminy, conducted</td>
<td>Isolated PVC (+VA block)</td>
<td>Normal</td>
<td>Regular</td>
<td><1:1</td>
<td>Normal</td>
<td>Irregular</td>
<td>Rare</td>
<td>Minor, transient</td>
</tr>
<tr>
<td>Ventricular bigeminy</td>
<td>Normal</td>
<td>Regular</td>
<td>1:2</td>
<td>Normal</td>
<td>Regularly irregular</td>
<td>Rare</td>
<td>Minor, transient</td>
<td></td>
</tr>
<tr>
<td>Second degree AVB Wenckebach</td>
<td>Normal</td>
<td>Regular</td>
<td>>1:1</td>
<td>Normal</td>
<td>Irregular</td>
<td>Rare</td>
<td>May progress</td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>Sinus</td>
<td>75–90</td>
<td>Regular</td>
<td>1:1</td>
<td>75–90</td>
<td>Regular</td>
<td>Long VA</td>
<td>+</td>
</tr>
<tr>
<td>Atrial bigeminy, blocked</td>
<td>Atrial bigeminy, blocked</td>
<td>Normal</td>
<td>Regularly irregular</td>
<td>2:1</td>
<td>65–90</td>
<td>Regular</td>
<td>Rare</td>
<td>Minor, transient</td>
</tr>
<tr>
<td>2:1 AV block</td>
<td>Normal</td>
<td>Regular</td>
<td>2:1</td>
<td>60–75</td>
<td>Regular</td>
<td>Rare</td>
<td>Major, may progress</td>
<td></td>
</tr>
<tr>
<td>Third degree AVB</td>
<td>Slow–normal</td>
<td>Regular</td>
<td>Dissociated</td>
<td>35–80</td>
<td>Regular</td>
<td>Rare</td>
<td>Major, irreversible</td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Sinus</td>
<td>160–200</td>
<td>Regular</td>
<td>1:1</td>
<td>160–200</td>
<td>Regular</td>
<td>Long VA</td>
<td>Rare</td>
</tr>
<tr>
<td>AV reentry</td>
<td>Normal</td>
<td>Regular</td>
<td>1:1</td>
<td>190–280</td>
<td>Regular</td>
<td>Short VA</td>
<td>++</td>
<td>Major, treatable</td>
</tr>
<tr>
<td>Atrial flutter</td>
<td>Normal</td>
<td>Regular</td>
<td>Mainly 2:1</td>
<td>150–250</td>
<td>Mainly regular</td>
<td>Rare</td>
<td>Major, treatable</td>
<td></td>
</tr>
<tr>
<td>JET, PJRT</td>
<td>Normal</td>
<td>Regular</td>
<td>1:1</td>
<td>180–230</td>
<td>Regular</td>
<td>Long VA</td>
<td>Rare</td>
<td>Major, treatable</td>
</tr>
<tr>
<td>Ventricular (+VA block)</td>
<td>Slow–normal</td>
<td>Regular</td>
<td><1:1</td>
<td>160–260</td>
<td>Regularly irregular</td>
<td>Dissociated</td>
<td>Rare</td>
<td>Major, treatable</td>
</tr>
</tbody>
</table>

A, atrial; A→V, atrioventricular; JET, junctional ectopic tachycardia; PAC, premature atrial complex; PJRT, permanent junctional reciprocating tachycardia; PVC, premature ventricular complex; V, ventricular; V→A, ventriculatoatrial; VA block, absence of retrograde conduction via AV node or accessory pathway.

Incidence: +++ , detected in 1/10–1/1000 pregnancies; ++ , in 1/1000–1/10000 pregnancies; + , in 1/10000–1/100 000 pregnancies; rare, affects fewer than 1/100 000 pregnancies.
Bradycardia
irregular

AV activity associated, every 3rd atrial contraction premature, blocked at AV-node

allorhythmic (2:1) - PACs

AV delay increasing, atrial contraction repeatedly blocked at AV-node

2.° AV block (Wenckebach)

AV activity dissociated, frequent PVCs

complete AV block & PVCs
Bradycardia

Regular AV Activity
- AV activity associated, slow atrial and slow ventricular rate
 - Sinus bradycardia (LQTS?)

Regular AV Activity Dissociated
- AV activity dissociated, normal atrial and slow ventricular rate
 - Bigeminal PACs
 - Complete AV-block