

Should we give Magnesium, Omega-3 and Iodine supplement in pregnancy? Recommendations of guidelines

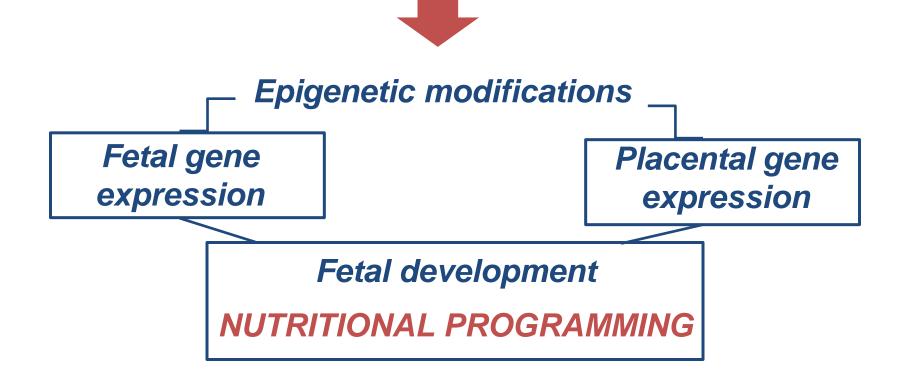
Irene Cetin

Professor of Obstetrics and Ginecology University of Milano Hospital Luigi Sacco irene.cetin@unimi.it

Maternal-Fetal Medicine and Perinatology Society of Turkey

X National Congress

October 27-30, 2016 Harbiye Military Museum, Istanbul/Turkey



outline

- ✓ nutritional facts
- ✓ omega 3 DHA
- ✓ iodine
- ✓ magnesium
- ✓ key points

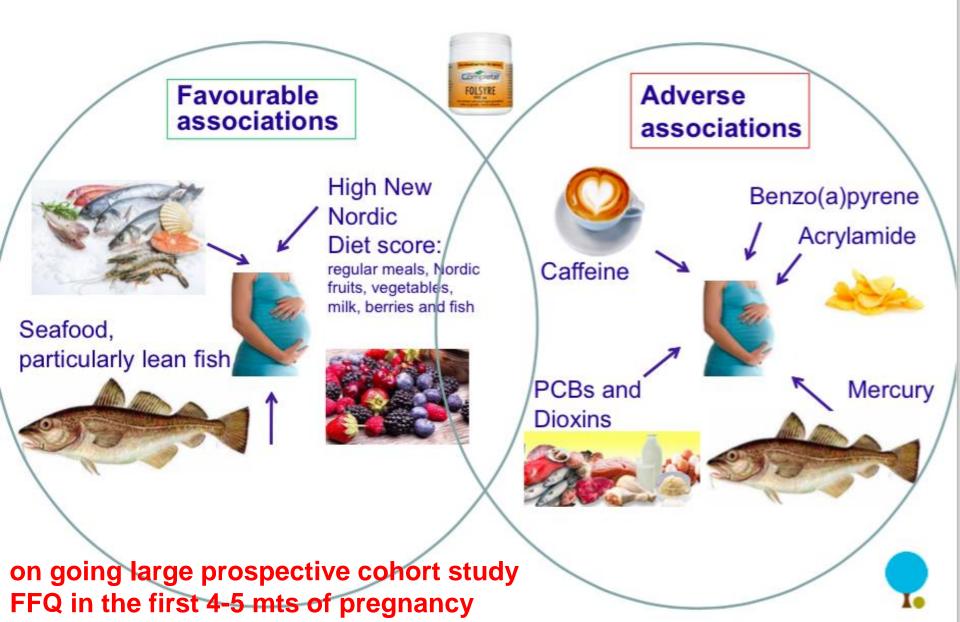
Maternal nutrition and programming

 Maternal diet is one of the main players in intrauterine programming, as macro and micronutrients are direct regulators of DNA stability and phenotypic adaptation, by influencing the availability of methyl donors and mechanisms promoting DNA stability

Cetin I et al., Curr Opin Clin Nutr Metab Care, 2013

Dietary pattern change - Mediterranean Adequacy Index

Map of the adherence to the Mediterranean dietary pattern, comparing Mediterranean adequacy index value (, 0.00-0.99; , 1.00-1.99; , 2.00-2.99; , 3.00-3.99; , 4.00-4.99; , 5.00-5.99)


1961-1965

MAI Worldwide: 2.86 MAI Mediterranean Countries: 3.44 MAI Italy: 3.30 MAI TURKEY: 5.03

2000-2003

MAI Worldwide: 2.03 MAI Mediterranean Countries : 1.98 **MAI Italy: 1.62 MAI TURKEY: 2.80** Courtesy of Helle Margrete Meltzer – Norwegian mother and Child Cohort Study

Maternal diet and birth size

Maternal-Fetal Medicine and Perinatology Society of Turkey

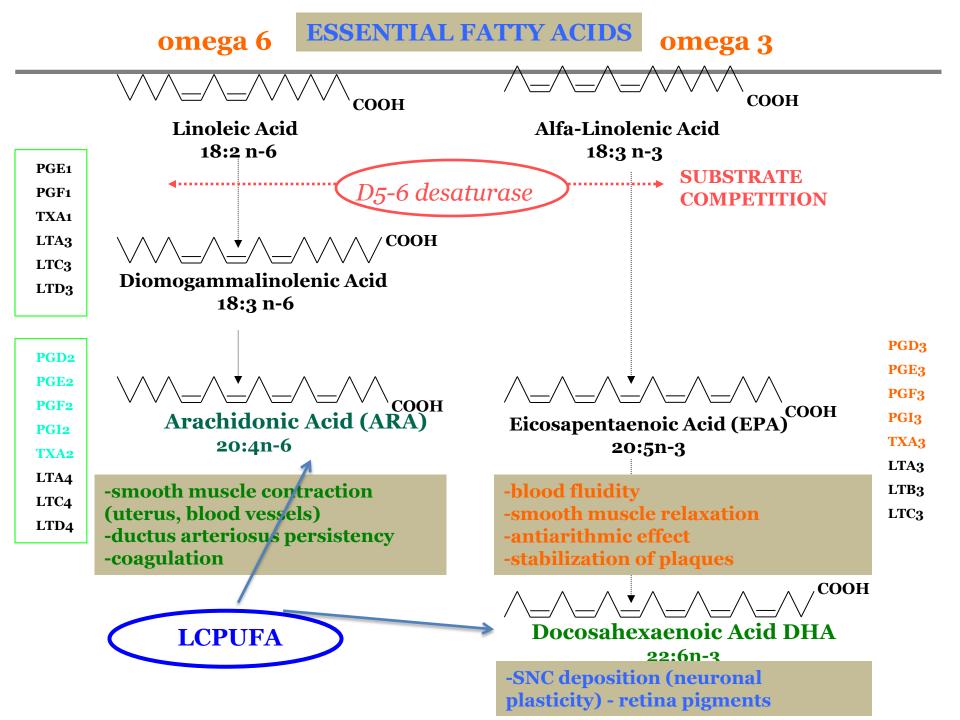
X National Congress

October 27-30, 2016 Harbiye Military Museum, Istanbul/Turkey

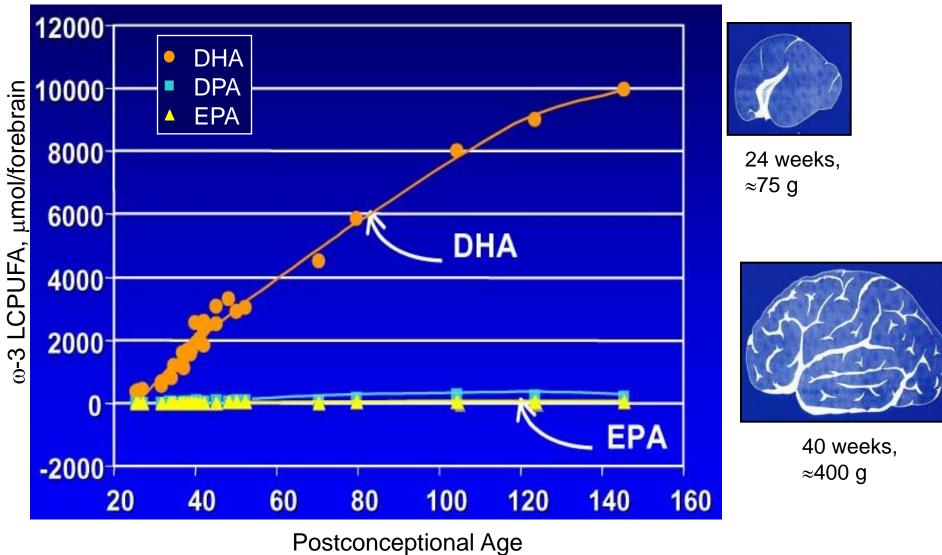
outline

- ✓ nutritional facts
- ✓ omega 3 DHA
- ✓ iodine
- ✓ magnesium
- ✓ key points

BMJ. 2002 Feb 23;324(7335):447.


Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. Olsen SF¹, Secher NJ.

CONCLUSION: Increased consumption of omega 3 can prevent low birth weight, pre-term labour and pre-eclampsia.


Fish consuming populations have on average:

- \checkmark longer gestations (1.6 -2.6 days in mean);
- ✓ heavier neonates (47 54g);
- ✓ less incidence of LBW
- \checkmark less incidence of perinatal death

Olsen SF et al . J Epidemiol Community Health 1985 Jensen CL. Am J Clin Nutr 2006 Berghella JMFNM 2015

Early DHA deposition in brain

Martinez 1992

Effects of ω -3 supplemention on offspring

Olsen et al. 2008: Am J Clin Nutr 88	Reduced hazard rate of asthma during 16-y follow-up of offspring	63% (95% CI: 8%, 85%; p= 0.03),		
IMMUNOLOGIC EFFECTS: ASTHMA	Reduced hazard rate of allergic asthma during 16-y follow-up of offspring	87% (95% CI: 40%, 97%; p= 0.01)		
Helland et al. 2003: Pediatrics 111	Children's mental processing scores (IQ) at 4-y aged	Mean IQ 106 vs 102 (p< 0.05). Significant correlation with maternal intake of DHA during pregnancy		
Smithers et al. 2008: Am J Clin Nutr 88	Increased visual acuity	At 4 months, high-DHA fetuses = 1.4 cycle per degree higher than controls (p= 0.025)		
Gale et al. 2008: J Child Psychol Psychiatry 49	Reduced risk of hyperactivity in fetuses	OR = 0.34 (95% CI: 0.15, 0.78)		
Judge et al. 2007: Am J Clin Nutr 85	Performance of problem-solving tasks	Significant effects on total intention score (p=0.017) and solutions (p=0.011), number of intentional solutions on both cloth (p=0.008) and cover (p=0.004) steps		

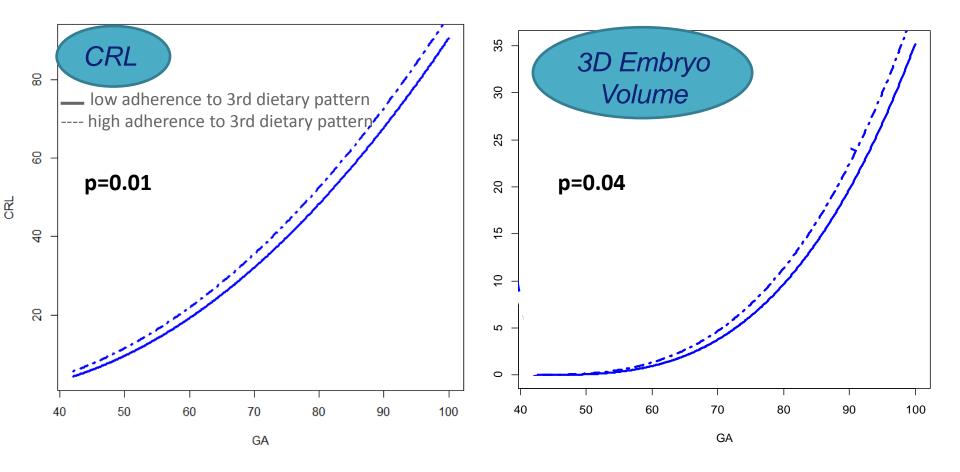
Effects of ω -3 supplementation on pregnancy outcome

8

Prolonged gestation (Meta-analysis)	Szajewska et al. 2006: Am J Clin Nutr 83	1.57 days (95% CI: 0.35, 2.78) (6 RCTs, n=1278)
	Makrides et al. 2006: Cochrane Database	2.55 days (95% CI: 1.03, 4.07) (3 trials, n=1621)
Pregnancy outcome (Meta-analysis)	Berghella et al. 2015: JMFNM,	34 RCT: no effect on preterm, PE and IUGR, ↓ 73% perinatal death if started <20 wks
Prevented preterm birth (<34 weeks) in high risk patients (Systematic Review)	Horvath et al. 2007: Br J Nutr 98	RR = 0.39 (95% CI 0.18, 0.84) (2 RCTs; n= 291)
Rate/Risk of pre- eclampsia	Szajewska et al. 2006: Am J Clin Nutr 83.	No significant difference in the RR/rate of pre-eclampsia
	Makrides et al. 2006: Cochrane Database Syst Rev CD003402	

Omega-3: effective in preventing early preterm delivery

Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies



Sumit Kar^{a,*}, Min Wong^b, Ewelina Rogozinska^c, Shakila Thangaratinam^{a,c,d}

a. Early preterm birth (< 34 weeks)

	Essential fatt	y acid	Control		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	dom, 95% Cl	
Blulstraw 1994	3	32	6	31	12.0%	0.48 [0.13, 1.77]		+	
Carlson 2013	1	154	7	147	4.6%	0.14 [0.02, 1.09]	· · · ·	†	
Makrides 2010	13	1197	27	1202	46.7%	0.48 [0.25, 0.93]		-	
Mardones 2007	2	493	10	477	8.8%	0.19 [0.04, 0.88]			
Olsen 2000a	5	108	16	120	21.4%	0.35 [0.13, 0.92]		-	
Onwude 1995	3	113	2	119	6.4%	1.58 [0.27, 9.28]			
Total (95% CI)		2097		2096	100.0%	0.42 [0.27, 0.66]	•		
Total events	27		68						
Heterogeneity: Tau ² = 0.00; Chi ² = 4.69, df = 5 (P = 0.46); l ² = 0%									
Test for overall effect: $Z = 3.76$ (P = 0.0002)						0.01 0.1 Durs experimental	1 10 Favours cont	100 trol	

Fish-related dietary pattern and embryonic growth

Parisi F et al et al., Hum Reprod in press

CONSENSUS RECOMMENDATIONS

DIETARY FAT INTAKE IN PREGNANCY AND LACTATION

Project supported by the European Union, Framework 5 programme, Quality of Life Key Action.

Koletzko B, Cetin I, Brenna J. B J Nutr 2007

RECCOMENDATIONS for LIPIDS and LC-PUFA

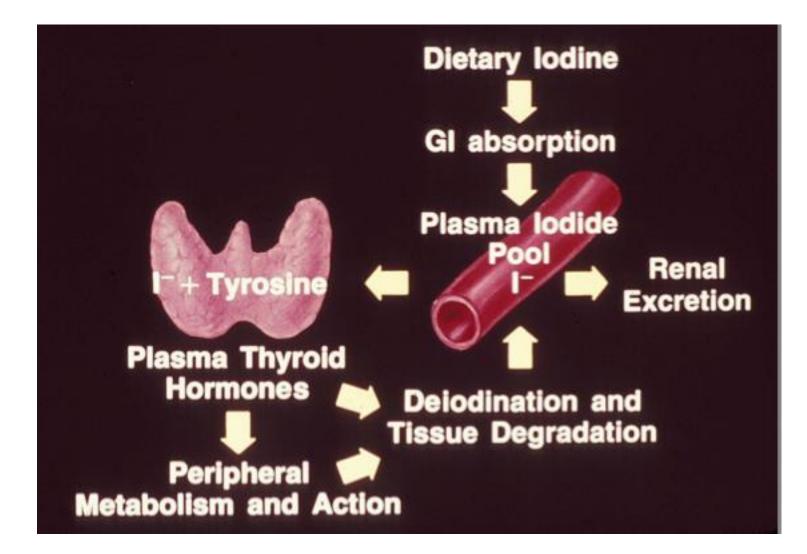
- 1. Lipid intake in pregnancy and lactation should not be different from the non pregnant state (as a proportion of total energy intake)
- 2. Women in pregnancy and lactation should reach the daily intake of 200mg/die of DHA with their diet. Amounts up to 1 g/die of DHA or 2.7 g/die of *n*-3 LCPUFA have been utilized in RCT without adverse effects.
- 3. Women in fertile age should be advised to consume 1-2 portions of fish per week (minimum dose of reccomended DHA without excessive exposure to contaminants)

Koletzko B, Cetin I, Brenna J. B J Nutr 2007

Maternal-Fetal Medicine and Perinatology Society of Turkey

X National Congress

October 27-30, 2016 Harbiye Military Museum, Istanbul/Turkey



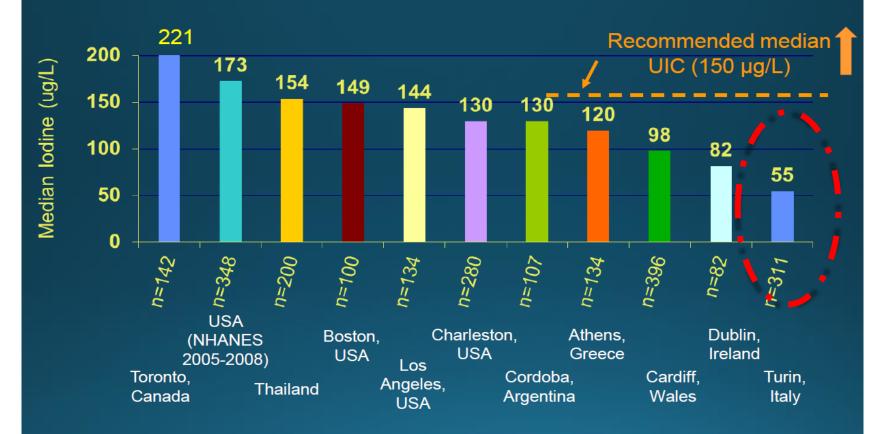
outline

- ✓ nutritional facts
- ✓ omega 3 DHA
- ✓ iodine
- ✓ magnesium
- ✓ key points

lodine

Thyroid Hormone and Brain Development

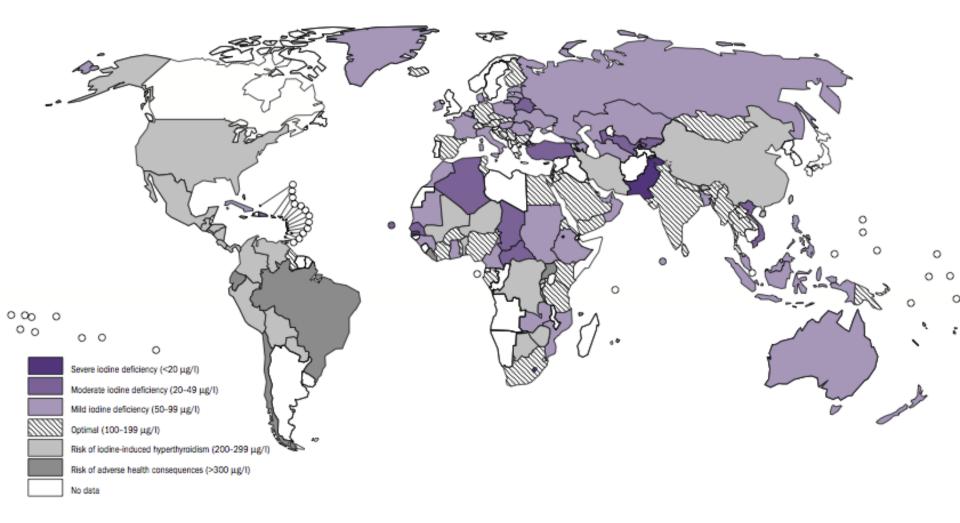
- Prenatal neocortical neurogenesis
- Growth of subventricular and subgranular zones
- Cell migration in cerebral cortex, hippocampus, cerebellum
- Axonal myelination
- Axon and dendrite formation
- Granule and other cerebellar cell proliferation; Purkinje cell maturation
- Postnatal neurogenesis


➢ Iodine intake < 20-25 µg/day → CRETINISM</p>

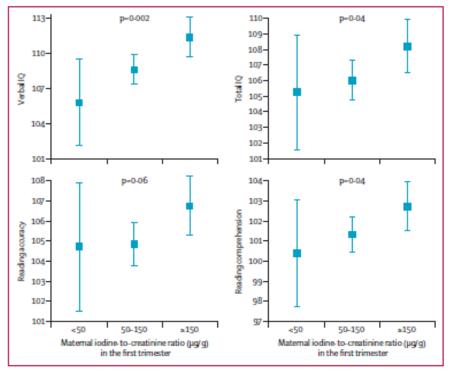
Mental retardation, impaired growth, and neurological abnormalities
Susceptible brain regions: cerebral neocortex, cochlea, basal ganglia; rapid growth in the 2nd trimester

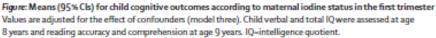
Stenzel D et al. *Front Neuroanat*DeSouza LA et al. *Mol Cell Neurosci*Ambrogini P et al. *Neuroendocrinology*Montero-Pedrazuela A et al. *Mol Psychiatry* Lemkine GF et al. *FASEB J*Auso E et al. *Endocrinology*Noguchi T et al. *Neurochem*Zoeller RT et al. *J Neuroendocrinol*Ahmed OM et al. *Int J Dev Neurosci*

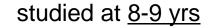
Iodine Deficiency


Median Urine Iodine in Pregnant Women in Canada, USA, Thailand, Argentina, Wales, Italy, Ireland, and Greece

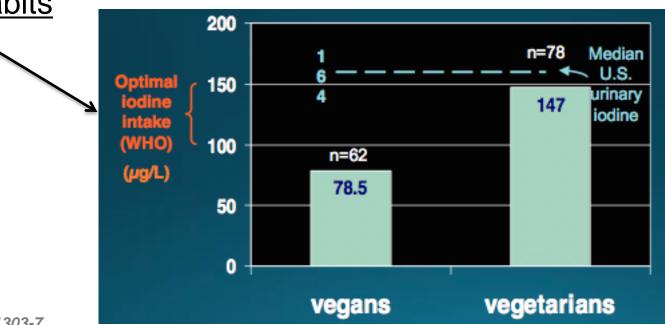
Pearce EN et al. *Thyroid* 2004 KL Caldwell KL et al, *Thyroid* 2005 Pearce EN et al. *J Clin Endo Metab* 2010


Pearce EN et al. *Endo Pract* 2011 Pearce EN et al. *Clin Endocrinol (Oxf)* 2012 Sullivan S et al. *Ob Gyn* 2012 Katz PM et al. *Endo Pract* 2013 Charatcharoenwitthaya N. et al. ATA 2013


Iodine Deficiency Worldwide (WHO report)


Effects of mild-moderate I deficiency in pregnancy

Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC)


Offspring of women with UI between 50-150 µg/l <u>in 1st trimester</u>

↓ IQ
 ↓ Reading accuracy
 ↓ Reading comprehension

Iodine Deficiency

- Mild-to-moderate iodine deficiency
 first cause of preventable mental retardation worldwide
- Higher risk for inadequate iodine intake
 - ✓ Pregnancy
 - ✓ Lactation
 - ✓ Fetus and neonate
 - ✓ Dietary habits

Leung et al, JCEM 2011;96(8):E1303-7

Iodine: recommendation in pregnancy

- WHO/UNICEF/ICCIDD (2007): 250 µg/die
- IOM (2001): 220 μ g/die \rightarrow upper intake level: 1100 μ g/die
- EFSA 2014: 200 μ g/die \rightarrow upper intake level: 600 μ g/die

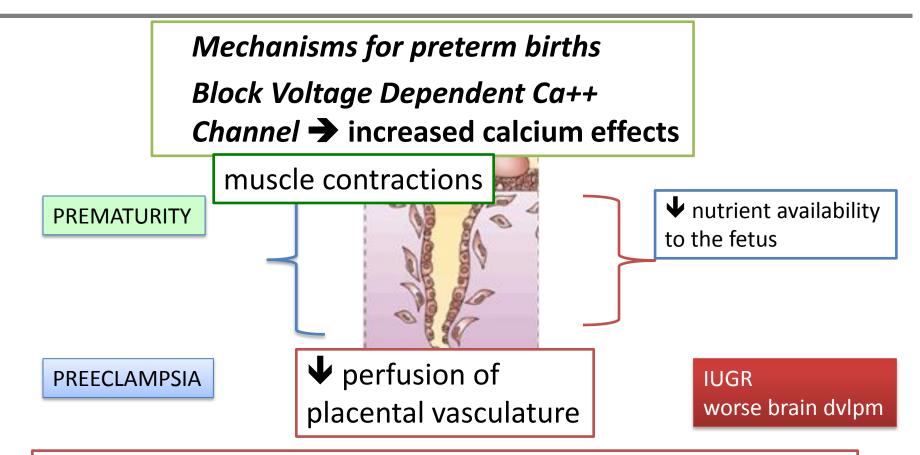
Programme

- Universal salt iodization since 1993
- Iodine supplementation (WHO/UNICEF)
- Supplementation for pregnant and lactating women with 150-200 μg/die in countries with iodine deficiency

Maternal-Fetal Medicine and Perinatology Society of Turkey

X National Congress

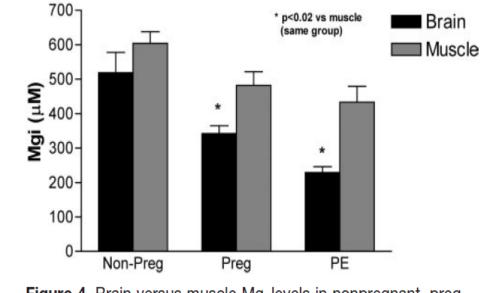
October 27-30, 2016 Harbiye Military Museum, Istanbul/Turkey



outline

- ✓ nutritional facts
- ✓ omega 3 DHA
- ✓ iodine
- ✓ magnesium
- ✓ key points

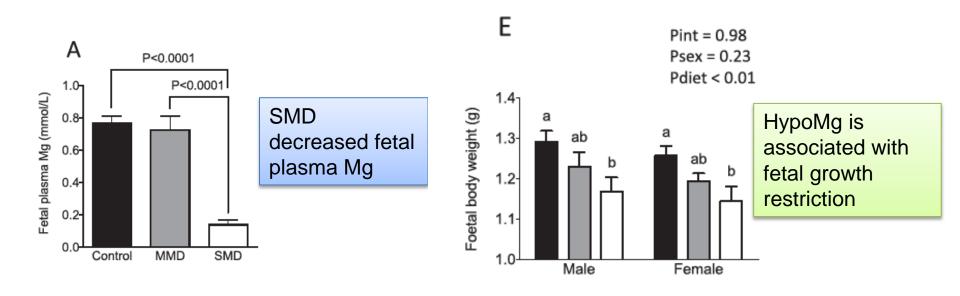
Health Outcomes potentially related to Mg deficiency

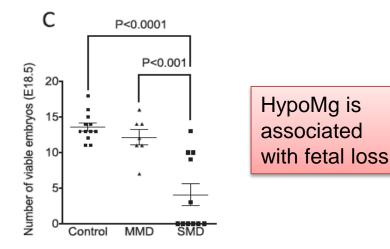

Mg deficiency and mechanisms of preeclampsia:

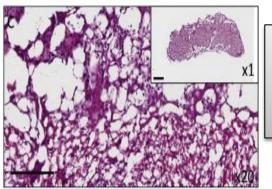
- mithocondrial oxidative phosphorylation
 increased

 release of oxidative products
- vasomotor tone

 increased calcium effects
- perfusion of placental vasculature


Magnesium and Preeclampsia




Figure 4. Brain versus muscle Mg_i levels in nonpregnant, pregnant, and preeclamptic women.

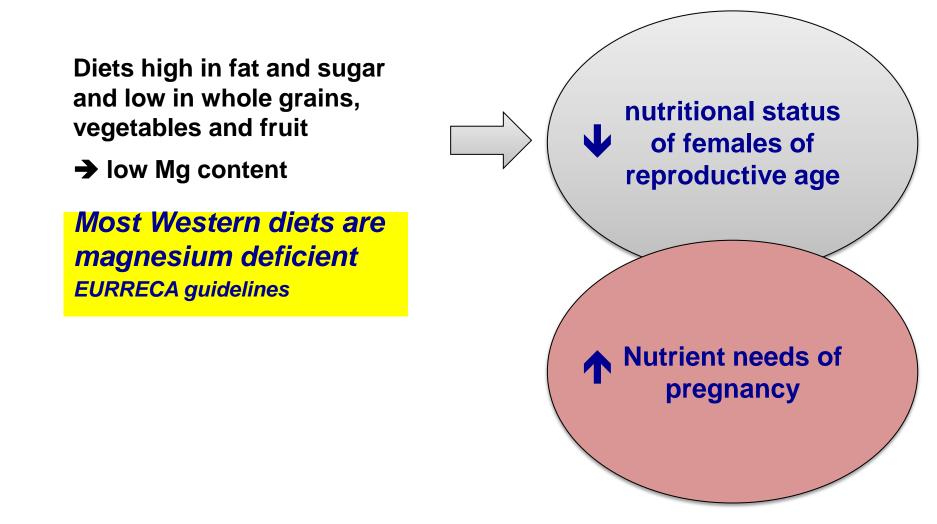
- 1. Pregnancy itself is characterized by lower Mg_i values both in brain and muscle tissue
- 2. Brain Mg_i levels are further suppressed in preeclamptic compared with normal pregnant and non-pregnant women
- 3. Both systolic and diastolic blood pressures are quantitatively and inversely related to brain Mg_i values
- Mg depletion in pregnancy appears to be differentially expressed in brain and muscle, Mg_i concentrations being equivalent in the non-pregnant state, but, with pregnancy, decreasing in brain to a greater extent than in muscle

Placental dysfunction caused by Mg deficiency

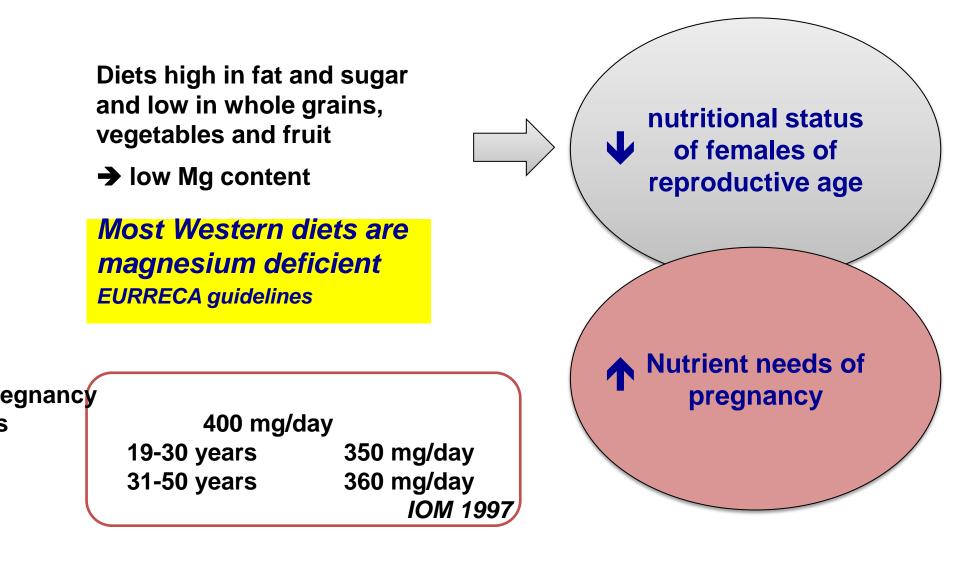
Gross abnormalities, increased glycogen cells

Magnesium and Preterm Delivery

Magnesium sulphate for preventing preterm birth in threatened preterm labour (Review)


Crowther CA, Brown J, McKinlay CJD, Middleton P

- **37 included trials** (total of 3571 women and over 3600 babies)
- Trials of moderate to high risk of bias
- Antenatal magnesium sulphate was compared with either placebo, no treatment, or a range of alternative tocolytic agents.


Magnesium sulphate is **ineffective at delaying birth or preventing preterm birth** and has no apparent advantages for a range of neonatal and maternal outcomes as a tocolytic agent

Its use could be appropriate in specific groups of women for maternal, fetal, neonatal and infant neuroprotection where beneficial effects have been demonstrated

Are we meeting nutrients needs in pregnancy?

Are we meeting nutrients needs in pregnancy?

Maternal-Fetal Medicine and Perinatology Society of Turkey

X National Congress

October 27-30, 2016 Harbiye Military Museum, Istanbul/Turkey

outline

- ✓ nutritional facts
- ✓ omega 3 DHA
- ✓ iodine
- ✓ magnesium
- ✓ key points

KEY POINTS

✓ Encourage women to establish <u>healthy dietary practice</u>
 <u>before conception</u>

✓ Nutritional inadequacies are very likely to occur in the pre-conceptional period as well as in pregnancy

	AI	SUPPLEMENTATION
magnesium	350-400 mg/die	240 mg/die in women at risk for preterm delivery, preeclampsia,
DHA	200 mg/die up to 1 g	all women that do not eat fish at least 2 times per week; all women at risk for preterm delivery
IODINE	220 μg/die	200 μg/die – from 3 months before conception - in iodine deficient areas

 ✓ supplementation for: twin pregnancies, obesity, adolescents, low BMI, celiac disease, risk for preterm delivery and preeclampsia

for the next generations

Courtesy of David Barker

rely